

Vehicle Systems Modeling Using ADVISOR Overview and Project Examples

Systems Analysis Team
Last updated 8/14/98

Presentation Outline

- Background on NREL & CTTS
- Introduction to ADVISOR
- Demonstration
- Applications
- Future Plans

National Renewable Energy Laboratory

Focused on Renewable Energy and Energy Efficiency

Center for Transportation Technologies and Systems

- Vehicle systems analysis
- Systems-level vehicle modeling
- Alternative fuels R&D
- Vehicle demonstration and testing
- Information dissemination
 - Alternative Fuels Data Center (www.afdc.doe.gov)
- Atmospheric reactions
- Auxiliary loads reduction
- Battery thermal management

Overview of ADVISOR

- ADVISOR: ADvanced Vehicle SimulatOR
 - used to simulate conventional, electric, or hybrid vehicles
- ADVISOR was created in Nov., 1994 to support DOE Hybrid Program at NREL
- Programmed in MATLAB/Simulink environment
 - graphical/object-oriented environment
 - allows flexibility in modeling new vehicles and control strategies
- Currently used by over 30 organizations
- Continuously fed up-to-date component test data through users and university validation efforts
- Part of a larger systems analysis effort from NREL and DOE

ADVISOR Partners

- Argonne National Laboratory
- Dept. of Energy
- Delphi Automotive
- Chrysler Corporation
- Ford Motor Company
- General Motors
- Idaho National Engineering Lab.
- Naval Research Lab.
- Oakland Univ.
- Purdue Univ.

- Princeton Univ.
- Rocky Mountain Institute
- TransMotive Inc.
- Univ. of Illinois at Urbana-Champaign
- Univ. of Maryland
- Univ. of Michigan
- Univ. of Tennessee
- USCAR
- Univ. of California at Davis
- Virginia Tech.
- more...

ADVISOR's File System

1st Generation ADVISOR GUI (ver. 1.2.1)

1st Generation ADVISOR Top-Level Block Diagram

1st Generation ADVISOR 2-Layers Down in 'road load'

Capabilities of ADVISOR

- Various vehicle types
 - conventional, series hybrid, and parallel hybrid vehicles
- Various control strategies
 - thermostat, power follower, power assist, etc.
- GUI or batch mode operation
- Parametric studies
- Performance assessments
- Trade-off studies
- Evaluating new technologies

ADVISOR Outputs

- average fuel economy & emissions
- time-dependent plots of variables
- scatter plots: regions of operation within component maps

Control Strategy Comparison: Engine Power

Control Strategy Comparison: Battery Power

Application of ADVISOR: Project Examples

- PNGV technology selection
- SAE test procedure development (J1711)

Project Example #1: PNGV Technology Downselect

- Objective Determine most promising HEV designs
- Timing 2 month-long project
- Approach
 - Led government team to assemble vehicle assumptions
 - Worked with industry partners to verify assumptions
 - Developed a file system to automatically:
 - Specify 176 distinct vehicles
 - Size components to meet performance requirements
 - Evaluate each vehicle
 - Verify, store, and output vehicle results

Automated Configuration Evaluation Process

Results: Fuel Economy & Emissions

Project Example #2: Evaluate SAE J1711 HEV Test Procedure

- Objective Evaluate draft SAE J1711 in terms of
 - robustness
 - simplicity
 - consistency with other emissions tests

- Timing 6 month project
- Approach
 - Work with SAE team to understand current J1711
 - Work with industry representatives to develop vehicle data
 - Develop file system to run vehicles through test and compute final emissions and fuel use

Design Space of Vehicles Considered

Emissions Predictions *BEFORE* Revisions: HEV vs. Conventional Vehicle

Emissions Predictions *AFTER* Revisions: HEV vs Conventional Vehicle

Why was ADVISOR applied to this task?

- Representative hybrid vehicles don't exist
- Required dynamometer test time extremely long
- Dynamometer time is too expensive to "try out" different test options
- ADVISOR can be used to testing vehicles and procedures "virtually"
 - saved time
 - saved money
 - highlights areas for improvement in the test procedure

Recent Activity on SAE Test Procedure

- Investigating effect of SOC correction on:
 - Fuel Economy
 - Emissions
- SOC correction involves interpolation
- Correction is only really valid if linear relationship
 - valid for fuel economy and hot emissions
 - not accurate for cold start emissions

Highway Fuel Consumption Linear relationship

Highway Emissions Linear relationship

Urban Fuel Consumption Linear relationship

Urban Emissions Very Non-linear relationship

Net Change in SOC [A h]

What's coming up?

- ADVISOR 2.0 release
 - planning for a September roll-out
 - publicly available software
 - will be available for free on a new web site
- New capabilities and improvements in A2
 - updated block diagrams
 - takes advantage of ML5.2/SL2.2 features
 - more intuitive structure and layout
 - new and improved GUI
 - used GUIDE to develop interface
 - full documentation included

New and Improved GUI - Vehicle Input

New and Improved GUI - Sim. Setup

New and Improved GUI - Results

Improved Top-Level Block Diagrams

Improved Internal Block Diagrams

